enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so ...

  3. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  4. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    If errors in representation and computation are more important than the speed of conversion to and from display, a scaled binary representation may be used, which stores a decimal number as a binary-encoded integer and a binary-encoded signed decimal exponent. For example, 0.2 can be represented as 2 × 10 −1.

  5. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    an 11-bit binary exponent, using "excess-1023" format. Excess-1023 means the exponent appears as an unsigned binary integer from 0 to 2047; subtracting 1023 gives the actual signed value; a 52-bit significand, also an unsigned binary number, defining a fractional value with a leading implied "1" a sign bit, giving the sign of the number.

  6. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    This table illustrates an example of an 8 bit signed decimal value using the two's complement method. The MSb most significant bit has a negative weight in signed integers, in this case -2 7 = -128. The other bits have positive weights. The lsb (least significant bit) has weight 2 0 =1. The signed value is in this case -128+2 = -126.

  7. Q (number format) - Wikipedia

    en.wikipedia.org/wiki/Q_(number_format)

    For example, the specification Q3.12 describes a signed binary fixed-point number with a w = 16 bits in total, comprising the sign bit, three bits for the integer part, and 12 bits that are the fraction. That is, a 16-bit signed (two's complement) integer, that is implicitly multiplied by the scaling factor 2 −12

  8. Offset binary - Wikipedia

    en.wikipedia.org/wiki/Offset_binary

    Offset binary, [1] also referred to as excess-K, [1] excess-N, excess-e, [2] [3] excess code or biased representation, is a method for signed number representation where a signed number n is represented by the bit pattern corresponding to the unsigned number n+K, K being the biasing value or offset.

  9. Signedness - Wikipedia

    en.wikipedia.org/wiki/Signedness

    For example, a two's complement signed 16-bit integer can hold the values −32768 to 32767 inclusively, while an unsigned 16 bit integer can hold the values 0 to 65535. For this sign representation method, the leftmost bit ( most significant bit ) denotes whether the value is negative (0 for positive or zero, 1 for negative).