Search results
Results from the WOW.Com Content Network
For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...
In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2] An example of a saddle point is when there is a critical point with a relative minimum along one ...
Photovoltaic solar cell I-V curves where a line intersects the knee of the curves where the maximum power transfer point is located. In mathematics , a knee of a curve (or elbow of a curve ) is a point where the curve visibly bends, specifically from high slope to low slope (flat or close to flat), or in the other direction.
A turning point of a differentiable function is a point at which the derivative has an isolated zero and changes sign at the point. [2] A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum). A turning point is thus a stationary point, but not all stationary points are turning points.
This curve will in general have different curvatures for different normal planes at p. The principal curvatures at p, denoted k 1 and k 2, are the maximum and minimum values of this curvature. Here the curvature of a curve is by definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positive if the curve ...
Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave function is zero at some point, then that point is a local maximum. Any local maximum of a concave function is also a global maximum.
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature at a point of a differentiable curve is the curvature of its osculating circle — that is, the circle that best approximates the curve near this ...