Search results
Results from the WOW.Com Content Network
A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. [1] The variable denoting time is usually written as t {\displaystyle t} .
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Differentiation with respect to time or one of the other variables requires application of the chain rule, [1] since most problems involve several variables. Fundamentally, if a function F {\displaystyle F} is defined such that F = f ( x ) {\displaystyle F=f(x)} , then the derivative of the function F {\displaystyle F} can be taken with respect ...
velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances. Derivatives can be generalized ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
In this article, we place a negative sign on the spatial coordinates (the time-positive metric convention = [,,,]). The factor of (1/ c ) is to keep the correct unit dimensionality , [length] −1 , for all components of the 4-vector and the (−1) is to keep the 4-gradient Lorentz covariant .
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).