Search results
Results from the WOW.Com Content Network
The dipole magnetic field created by this permanent moment has a strength of 719 ± 2 nT at Ganymede's equator, [23] which should be compared with the Jovian magnetic field at the distance of Ganymede—about 120 nT. [95] The equatorial field of Ganymede is directed against the Jovian field, meaning reconnection is possible. The intrinsic field ...
One way to decrease loss from sputtering is for the moon to have a strong magnetic field of its own that can deflect stellar wind and radiation belts. NASA's Galileo ' s measurements suggest that large moons can have magnetic fields; it found Ganymede has its own magnetosphere, even though its mass is only 2.5% of Earth's. [18]
(Ice has less tensile strength than rock, and is deformed at lower pressures and temperatures than rock.) The evidence is perhaps strongest for Ganymede, which has a magnetic field that indicates the fluid movement of electrically conducting material in its interior, though whether that fluid is a metallic core or a subsurface ocean is unknown ...
Ganymede also shows a weak magnetosphere, taken as evidence of a subsurface layer of salt water, while the volume around Rhea shows symmetrical effects which may be rings or a magnetic phenomenon. Of these, Earth's magnetosphere is by far the most accessible, including from the surface.
The Earth has an observed magnetic field generated within its metallic core. [28] The Earth has a 5–10% mass deficit for the entire core and a density deficit from 4–5% for the inner core. [ 26 ] The Fe/Ni value of the core is well constrained by chondritic meteorites. [ 26 ]
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun.