Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
The character ∂ (Unicode: U+2202) is a stylized cursive d mainly used as a mathematical symbol, usually to denote a partial derivative such as / (read as "the partial derivative of z with respect to x").
In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers , and it regulates which primes are ramified .
This is an example of a pure cubic field, and hence of a complex cubic field. In fact, of all pure cubic fields, it has the smallest discriminant (in absolute value), namely −108. [2] The complex cubic field obtained by adjoining to Q a root of x 3 + x 2 − 1 is not pure. It has the smallest discriminant (in absolute value) of all cubic ...
By definition, the different ideal δ K is the inverse fractional ideal I −1: it is an ideal of O K. The ideal norm of δ K is equal to the ideal of Z generated by the field discriminant D K of K. The different of an element α of K with minimal polynomial f is defined to be δ(α) = f′(α) if α generates the field K (and zero otherwise ...
The discriminant of a polynomial is a quantity that depends on the coefficients and determines various properties of the roots. Discriminant may also refer to its various generalizations: Mathematics
Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group () ().
In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables.