Search results
Results from the WOW.Com Content Network
Hyperbolic geometry is more closely related to Euclidean geometry than it seems: the only axiomatic difference is the parallel postulate. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry. There are two kinds of absolute geometry, Euclidean and hyperbolic.
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.
The new axiom is Lobachevsky's parallel postulate (also known as the characteristic postulate of hyperbolic geometry): [75] Through a point not on a given line there exists (in the plane determined by this point and line) at least two lines which do not meet the given line. With this addition, the axiom system is now complete.
hyperbolic plane: plane, where the parallel postulate does not hold E 3: Euclidean 3 space: space defined by three perpendicular coordinate axes MLD: Mutually locally derivable: two tilings are said to be mutually locally derivable from each other, if one tiling can be obtained from the other by a simple local rule (such as deleting or ...
Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):
In hyperbolic geometry (where Wallis's postulate is false) similar triangles are congruent. In the axiomatic treatment of Euclidean geometry given by George David Birkhoff (see Birkhoff's axioms ) the SAS similarity criterion given above was used to replace both Euclid's parallel postulate and the SAS axiom which enabled the dramatic shortening ...