enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as y = 1 − x 2 . {\displaystyle y={\sqrt {1-x^{2}}}.}

  3. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...

  4. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...

  5. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  7. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    These formulas can be derived from the special case of arc-length parametrization in the following way. The above condition on the parametrisation imply that the arc length s is a differentiable monotonic function of the parameter t , and conversely that t is a monotonic function of s .

  8. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the point opposite C on the circle. Thus the length of CA is s 2n, the length of C′A is c 2n, and C′CA is itself a right triangle on diameter C′C.

  9. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    In other words, if γ 1 (t) and γ 2 (t) are two curves in such that for any t, the two principal normals N 1 (t), N 2 (t) are equal, then γ 1 and γ 2 are Bertrand curves, and γ 2 is called the Bertrand mate of γ 1. We can write γ 2 (t) = γ 1 (t) + r N 1 (t) for some constant r. [1]