Ad
related to: exponential decay worksheet
Search results
Results from the WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
When an electromagnetic wave travels through a medium in which it gets attenuated (this is called an "opaque" or "attenuating" medium), it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated.
In phenomenological applications, it is often not clear whether the stretched exponential function should be used to describe the differential or the integral distribution function—or neither. In each case, one gets the same asymptotic decay, but a different power law prefactor, which makes fits more ambiguous than for simple exponentials.
If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing exponential decay instead. In the case of a discrete domain of definition with equal intervals, it is also called geometric growth or geometric decay since the function values form a geometric progression.
It is a complex number with two pieces of information: real part is the temporal oscillation; imaginary part is the temporal, exponential decay. In certain cases the amplitude of the wave decays quickly, to follow the decay for a longer time one may plot log | ψ ( t ) | {\displaystyle \log \left|\psi (t)\right|}
In semiconductor lasers, the carrier lifetime is the time it takes an electron before recombining via non-radiative processes in the laser cavity. In the frame of the rate equations model, carrier lifetime is used in the charge conservation equation as the time constant of the exponential decay of carriers.
Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. It can be used as an imaging technique in confocal microscopy , two-photon excitation microscopy , and multiphoton tomography.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Ad
related to: exponential decay worksheet