Search results
Results from the WOW.Com Content Network
A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function. If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ...
English: A PDF version of the en:Python Programming Wikibook. This file was created with MediaWiki to LaTeX . The LaTeX source code is attached to the PDF file (see imprint).
The symbolic regression problem for mathematical functions has been tackled with a variety of methods, including recombining equations most commonly using genetic programming, [1] as well as more recent methods utilizing Bayesian methods [2] and neural networks. [3]
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state ...
An animated cobweb diagram of the logistic map = (), showing chaotic behaviour for most values of >. A cobweb plot , known also as Lémeray Diagram or Verhulst diagram is a visual tool used in the dynamical systems field of mathematics to investigate the qualitative behaviour of one-dimensional iterated functions , such as the logistic map .
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
F transforms each commutative diagram in C into a commutative diagram in D; if f is an isomorphism in C, then F(f) is an isomorphism in D. One can compose functors, i.e. if F is a functor from A to B and G is a functor from B to C then one can form the composite functor G ∘ F from A to C. Composition of functors is associative where defined.