Search results
Results from the WOW.Com Content Network
An example of semi-elasticity is modified duration in bond trading. The opposite definition is sometimes used in the literature. That is, the term "semi-elasticity" is also sometimes used for the change (not percentage-wise) in f(x) in terms of a percentage change in x [ 9 ] which would be
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...
The bulk modulus (K) describes volumetric elasticity, or the tendency of an object to deform in all directions when uniformly loaded in all directions; it is defined as volumetric stress over volumetric strain, and is the inverse of compressibility. The bulk modulus is an extension of Young's modulus to three dimensions.
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
Elasticity (economics), a general term for a ratio of change. For more specific economic forms of elasticity, see: Cross elasticity of demand; Elasticity of substitution; Frisch elasticity of labor supply; Income elasticity of demand; Output elasticity; Price elasticity of demand; Price elasticity of supply; Yield elasticity of bond value
Elasticity is a branch of Solid mechanics that deals with the elastic behavior of solids. It is the property of material of a body which regains its original shape and size. It is the property of material of a body which regains its original shape and size.
Given the definition of the elasticity coefficient in terms of a partial derivative, it is possible, for example, to determine the elasticity of an arbitrary rate law by differentiating the rate law by the independent variable and scaling. For example, the elasticity coefficient for a mass-action rate law such as:
For an elastic body with a single degree of freedom (DOF) (for example, stretching or compression of a rod), the stiffness is defined as = where, F {\displaystyle F} is the force on the body δ {\displaystyle \delta } is the displacement produced by the force along the same degree of freedom (for instance, the change in length of a stretched ...