Search results
Results from the WOW.Com Content Network
Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al 2 O 3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and ...
Aluminium(I) oxide (Al 2 O) Aluminium(II) oxide (AlO) (aluminium monoxide) Aluminium(III) oxide (aluminium oxide), (Al 2 O 3), the most common form of aluminium oxide, occurring on the surface of aluminium and also in crystalline form as corundum, sapphire, and ruby
The vast majority of compounds, including all aluminium-containing minerals and all commercially significant aluminium compounds, feature aluminium in the oxidation state 3+. The coordination number of such compounds varies, but generally Al 3+ is either six- or four-coordinate. Almost all compounds of aluminium(III) are colorless. [2]
An oxide (/ ˈ ɒ k s aɪ d /) is a chemical compound containing at least one oxygen atom and one other element [1] in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of –2) of oxygen, an O 2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials ...
Aluminium nitrate cannot be synthesized by the reaction of aluminium with concentrated nitric acid, as the aluminium forms a passivation layer. Aluminium nitrate may instead be prepared by the reaction of nitric acid with aluminium(III) chloride. Nitrosyl chloride is produced as a by-product; it bubbles out of the solution as a gas.
The aluminium oxides, oxide hydroxides, and hydroxides can be summarized as follows: aluminium oxides. corundum (Al 2 O 3) aluminium oxide hydroxides diaspore (α-AlO(OH)) boehmite or böhmite (γ-AlO(OH)) akdalaite (5Al 2 O 3 ·H 2 O) (once believed to be 4Al 2 O 3 ·H 2 O), also called tohdite; aluminium hydroxides
Aluminothermic reactions are exothermic chemical reactions using aluminium as the reducing agent at high temperature. The process is industrially useful for production of alloys of iron. [1] The most prominent example is the thermite reaction between iron oxides and aluminium to produce iron itself: Fe 2 O 3 + 2 Al → 2 Fe + Al 2 O 3
With the formula AlF 3 ·xH 2 O, these compounds include monohydrate (x = 1), two polymorphs of the trihydrate (x = 3), a hexahydrate (x = 6), and a nonahydrate (x = 9). [10] The majority of aluminium fluoride is produced by treating alumina with hydrogen fluoride at 700 °C: [4] Hexafluorosilicic acid may also be used make aluminium fluoride. [11]