Search results
Results from the WOW.Com Content Network
Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.
Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]
In organic chemistry, negative hyperconjugation is the donation of electron density from a filled π- or p-orbital to a neighboring σ *-orbital. [1] This phenomenon, a type of resonance, can stabilize the molecule or transition state. [2] It also causes an elongation of the σ-bond by adding electron density to its antibonding orbital. [1]
Another class of oxonium ions encountered in organic chemistry is the oxocarbenium ions, obtained by protonation or alkylation of a carbonyl group e.g. R−C= + −R′ which forms a resonance structure with the fully-fledged carbocation R− + −O−R′ and is therefore especially stable:
Therefore, both of the depicted structures will exist in a D- and an L-form. : [10] Anti-Markovnikov rearrangement. This product distribution can be rationalized by assuming that loss of the hydroxy group in 1 gives the tertiary carbocation A, which rearranges to the seemingly less stable secondary carbocation B. Chlorine can approach this ...
Linear and bridged structure of vinyl cation C 2 H + 3. Adapted from [17] Resonance structure of β-silyl substituted vinyl cation that exhibits hyperconjugation. The bond angle from the X-ray structure is also noted. Adapted from [17] Two possible structures can be envisioned for C 2 H +