Search results
Results from the WOW.Com Content Network
The NADH generated by the citric acid cycle is fed into the oxidative phosphorylation (electron transport) pathway. The net result of these two closely linked pathways is the oxidation of nutrients to produce usable chemical energy in the form of ATP. In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion.
The Krebs cycle, also known as the TCA cycle or Citric Acid cycle, is a biochemical pathway that facilitates the breakdown of glucose in a cell. Both citrate and malate involved in the citrate-malate shuttle are necessary intermediates of the Krebs cycle. [9]
The citric acid cycle is a series of enzymatic reactions carried out inside the inner membranes of the cell's mitochondria. The process begins when the two-carbon acetyl CoA enters the cycle and joins the four-carbon oxaloacetate to produce the six-carbon citrate.
Anaplerotic reactions, a term coined by Hans Kornberg and originating from the Greek ἀνά= 'up' and πληρόω= 'to fill', are chemical reactions that form intermediates of a metabolic pathway. Examples of such are found in the citric acid cycle (TCA cycle). In normal function of this cycle for respiration, concentrations of TCA ...
Citrate is an intermediate in the citric acid cycle, also known as the TCA (TriCarboxylic Acid) cycle or the Krebs cycle, a central metabolic pathway for animals, plants, and bacteria. In the Krebs cycle, citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate.
Citrate synthase (E.C. 2.3.3.1 (previously 4.1.3.7)) is an enzyme that exists in nearly all living cells. It functions as a pace-making enzyme in the first step of the citric acid cycle (or Krebs cycle). [5] Citrate synthase is located within eukaryotic cells in the mitochondrial matrix, but is encoded by nuclear DNA rather than
At high glucose levels, glycolysis takes place rapidly, thus increasing the amount of citrate produced from the citric acid cycle. This citrate is then exported to other organelles outside the mitochondria to be broken into acetyl-CoA and oxaloacetate by the enzyme ATP citrate lyase (ACL). This principal reaction is coupled with the hydrolysis ...
The energy stored in the chemical bonds of glucose is released by the cell in the citric acid cycle, producing carbon dioxide and the energetic electron donors NADH and FADH. Oxidative phosphorylation uses these molecules and O 2 to produce ATP , which is used throughout the cell whenever energy is needed.