Search results
Results from the WOW.Com Content Network
The y-intercept is the initial value = = at =. The slope a measures the rate of change of the output y per unit change in the input x. In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +.
These points form a line, and y = x is said to be the equation for this line. In general, linear equations involving x and y specify lines, quadratic equations specify conic sections, and more complicated equations describe more complicated figures. [17] Usually, a single equation corresponds to a curve on the plane.
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0 , the line is the graph of the function of x that has been defined in the preceding section.
y=f(x)=.5x+1 or f(x,y)=x-2y+2=0 Positive and negative half-planes. The slope-intercept form of a line is written as = = + where is the slope and is the y-intercept. Because this is a function of only , it can't represent a vertical line.
This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed. Thus the graph of f −1 can be obtained from the graph of f by switching the positions of the x and y axes. This is equivalent to reflecting the graph across the line y = x. [16] [1]
Functions of the form = have at most one -intercept, but may contain multiple -intercepts. The x {\displaystyle x} -intercepts of functions, if any exist, are often more difficult to locate than the y {\displaystyle y} -intercept, as finding the y {\displaystyle y} -intercept involves simply evaluating the function at x = 0 {\displaystyle x=0} .
More technically, the abscissa of a point is the signed measure of its projection on the primary axis. Its absolute value is the distance between the projection and the origin of the axis, and its sign is given by the location on the projection relative to the origin (before: negative; after: positive). Similarly, the ordinate of a point is the ...
The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of the MR function is one-half the value of the demand function, and the slope of the MR function is twice that of the ...