Search results
Results from the WOW.Com Content Network
4-Toluenesulfonyl chloride (p-toluenesulfonyl chloride, toluene-p-sulfonyl chloride) is an organic compound with the formula CH 3 C 6 H 4 SO 2 Cl. This white, malodorous solid is a reagent widely used in organic synthesis. [2] Abbreviated TsCl or TosCl, it is a derivative of toluene and contains a sulfonyl chloride (−SO 2 Cl) functional group.
Tosyl group (blue) with a generic "R" group attached Tosylate group with a generic "R" group attached. Note the extra oxygen, compared to plain tosyl. In organic chemistry, a toluenesulfonyl group (tosyl group, abbreviated Ts or Tos [nb 1]) is a univalent functional group with the chemical formula −SO 2 −C 6 H 4 −CH 3.
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]
Rates of reaction can be studied by examining activated complexes near the saddle point of a potential energy surface. The details of how these complexes are formed are not important. The saddle point itself is called the transition state. The activated complexes are in a special equilibrium (quasi-equilibrium) with the reactant molecules.
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...