Search results
Results from the WOW.Com Content Network
Elastic scattering is a form of particle scattering in scattering theory, nuclear physics and particle physics. In this process, the internal states of the particles involved stay the same. In the non-relativistic case, where the relative velocities of the particles are much less than the speed of light , elastic scattering simply means that ...
The term "elastic scattering" implies that the internal states of the scattering particles do not change, and hence they emerge unchanged from the scattering process. In inelastic scattering, by contrast, the particles' internal state is changed, which may amount to exciting some of the electrons of a scattering atom, or the complete ...
Rutherford scattering or Coulomb scattering is the elastic scattering of charged particles by the Coulomb interaction. The paper also initiated the development of the planetary Rutherford model of the atom and eventually the Bohr model .
The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...
Surface roughness scattering or interface roughness scattering is the elastic scattering of particles against a rough solid surface or imperfect interface between two different materials. This effect has been observed in classical systems, such as microparticle scattering, [ 1 ] as well as quantum systems , where it arises electronic devices ...
In chemistry, nuclear physics, and particle physics, inelastic scattering is a process in which the internal states of a particle or a system of particles change after a collision. Often, this means the kinetic energy of the incident particle is not conserved (in contrast to elastic scattering).
Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering : the particle's kinetic energy and photon frequency do not change as a result of the scattering. [ 1 ]
Thomson scattering is the classical elastic quantitative interpretation of the scattering process, [26] and this can be seen to happen with lower, mid-energy, photons. The classical theory of an electromagnetic wave scattered by charged particles, cannot explain low intensity shifts in wavelength.