Search results
Results from the WOW.Com Content Network
Pyrrole is an extremely weak base for an amine, with a conjugate acid pK a of −3.8. The most thermodynamically stable pyrrolium cation (C 4 H 6 N +) is formed by protonation at the 2 position. Substitution of pyrrole with alkyl substituents provides a more basic molecule—for example, tetramethylpyrrole has a conjugate acid pK a of +3.7.
Below is one published mechanism for the reaction: [5] Mechanism for the Hantzsch Pyrrole Synthesis. The mechanism starts with the amine (1) attacking the β carbon of the β-ketoesters (2), and eventually forming an enamine (3). The enamine then attacks the carbonyl carbon of the α-haloketone (4). This is followed by the loss of H 2 O, giving ...
The amine attacks the other carbonyl to form a 2,5-dihydroxytetrahydropyrrole derivative which undergoes dehydration to give the corresponding substituted pyrrole. [7] Paal–Knorr pyrrole synthesis mechanism. The reaction is typically run under protic or Lewis acidic conditions, with a primary amine.
The resulting product, diethyl 3,5-dimethylpyrrole-2,4-dicarboxylate, has been called Knorr's Pyrrole ever since. In the Scheme above, R 2 = COOEt, and R 1 = R 3 = Me represent this original reaction. Knorr's pyrrole can be derivatized in a number of useful manners. One equivalent of sodium hydroxide will saponify the 2-ester selectively.
2-mesityl-3-methylpyrrole was synthesized in 2004 via the Trofimov reaction. The reaction of the ketoxime with acetylene yielded a mixture of products with the primary one being the N-H pyrrole. Small amounts of the N-vinyl product were also observed as well as O-vinylketoxime. The N-vinyl product was then used in the synthesis of a new BODIPY. [5]
Structures and names of common heterocyclic compounds Pyridine, a heterocyclic compound. A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). [1]
The aldehyde and pyrrole are heated in this medium to afford modest yields of the meso tetrasubstituted porphyrins [RCC 4 H 2 N] 4 H 2. The reaction entails both condensation of the aldehydes with the 2,5-positions of the pyrrole but also oxidative dehydrogenation of the porphyrinogen [RCC 4 H 2 NH] 4.
Reaction example of Chan–Lam coupling. Compound 1, a pyrrole, is coupled with aryl boronic acid, 2, to afford product 3, which is then carried forward to the target 4. The nitrile group of 2 does not poison the catalyst. Pyridine is the ligand used for the reaction. Although the reaction requires three days, it was carried out at room ...