Search results
Results from the WOW.Com Content Network
Serial communication is used for all long-haul communication and most computer networks, where the cost of cable and difficulty of synchronization make parallel communication impractical. Serial computer buses have become more common even at shorter distances, as improved signal integrity and transmission speeds in newer serial technologies ...
USARTs in synchronous mode transmits data in frames. In synchronous operation, characters must be provided on time until a frame is complete; if the controlling processor does not do so, this is an "underrun error," and transmission of the frame is aborted. USARTs operating as synchronous devices used either character-oriented or bit-oriented mode.
Practically all parallel communications protocols use synchronous transmission. For example, in a computer, address information is transmitted synchronously—the address bits over the address bus, and the read or write strobes of the control bus. Single-wire synchronous signalling
At the destination, a second UART re-assembles the bits into complete bytes. Each UART contains a shift register, which is the fundamental method of conversion between serial and parallel forms. Serial transmission of digital information (bits) through a single wire or other medium is less costly than parallel transmission through multiple wires.
The basic difference between a parallel and a serial communication channel is the number of electrical conductors used at the physical layer to convey bits. Parallel communication implies more than one such conductor. For example, an 8-bit parallel channel will convey eight bits (or a byte) simultaneously, whereas a serial channel would convey ...
These blocks convert data between serial data and parallel interfaces in each direction. The term "SerDes" generically refers to interfaces used in various technologies and applications. The primary use of a SerDes is to provide data transmission over a single line or a differential pair in order to minimize the number of I/O pins and ...
Data communication, including data transmission and data reception, is the transfer of data, transmitted and received over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires , optical fibers , wireless communication using radio spectrum , storage media and computer buses .
Other topics associated with the physical layer include: bit rate; point-to-point, multipoint or point-to-multipoint line configuration; physical network topology, for example bus, ring, mesh or star network; serial or parallel communication; simplex, half duplex or full duplex transmission mode; and autonegotiation [15]