enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    It is often convenient to formulate the trajectory of a particle r(t) = (x(t), y(t), z(t)) using polar coordinates in the X–Y plane. In this case, its velocity and acceleration take a convenient form. Recall that the trajectory of a particle P is defined by its coordinate vector r measured in a fixed reference frame F.

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T2. The SI unit of acceleration is the metre per second squared (m s −2 ); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

  7. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    where t = t(n) is called the surface traction, integrated over the surface of the body, in turn n denotes a unit vector normal and directed outwards to the surface S. Let the coordinate system ( x 1 , x 2 , x 3 ) be an inertial frame of reference , r be the position vector of a point particle in the continuous body with respect to the origin of ...

  8. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  9. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    The centripetal acceleration given by ⁠ v 2 / r ⁠ is normal to the arc and inward. When the particle passes the connection of pieces, it experiences a jump-discontinuity in acceleration given by ⁠ v 2 / r ⁠, and it undergoes a jerk that can be modeled by a Dirac delta, scaled to the jump-discontinuity.