enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    If A is an m × n matrix and A T is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A A T is m × m and A T A is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A A T has entries that are the inner product of a row of A with a column of A T.

  3. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (that is, orthonormal vectors). Equivalently, a matrix A is orthogonal if its transpose is equal to its inverse: =, which entails

  5. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    In-place matrix transposition, also called in-situ matrix transposition, is the problem of transposing an N×M matrix in-place in computer memory, ideally with O (bounded) additional storage, or at most with additional storage much less than NM.

  6. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    And since a rotation matrix commutes with its transpose, it is a normal matrix, so can be diagonalized. We conclude that every rotation matrix, when expressed in a suitable coordinate system, partitions into independent rotations of two-dimensional subspaces, at most ⁠ n / 2 ⁠ of them.

  9. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...