Search results
Results from the WOW.Com Content Network
The ladder operators of the quantum harmonic oscillator or the "number representation" of second quantization are just special cases of this fact. Ladder operators then become ubiquitous in quantum mechanics from the angular momentum operator, to coherent states and to discrete magnetic translation operators.
In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...
The total angular momentum operators can be shown to satisfy the very same commutation relations, [,] = , where k, l, m ∈ {x, y, z}. Indeed, the preceding construction is the standard method [ 4 ] for constructing an action of a Lie algebra on a tensor product representation.
Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, [,] =, [,] =, [,] =, where i is the purely imaginary number and the Planck constant ħ has been set equal to one. The Casimir operator
Another type of operator in quantum field theory, discovered in the early 1970s, is known as the anti-symmetric operator.This operator, similar to spin in non-relativistic quantum mechanics is a ladder operator that can create two fermions of opposite spin out of a boson or a boson from two fermions.
In quantum mechanics and its applications to quantum many-particle systems, notably quantum chemistry, angular momentum diagrams, or more accurately from a mathematical viewpoint angular momentum graphs, are a diagrammatic method for representing angular momentum quantum states of a quantum system allowing calculations to be done symbolically.
A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.
Therefore, A and B form operator algebras analogous to angular momentum; same ladder operators, z-projections, etc., independently of each other as each of their components mutually commute. By the analogy to the spin quantum number, we can introduce positive integers or half integers, a, b , with corresponding sets of values m = a , a − 1 ...