Search results
Results from the WOW.Com Content Network
Gas stoichiometry is the quantitative relationship (ratio) between reactants and products in a chemical reaction with reactions that produce gases. Gas stoichiometry applies when the gases produced are assumed to be ideal, and the temperature, pressure, and volume of the gases are all known. The ideal gas law is used for these calculations.
Pages in category "Stoichiometry" The following 22 pages are in this category, out of 22 total. This list may not reflect recent changes. ...
For his 1934 paper, Alfred Redfield analyzed nitrate and phosphate data for the Atlantic, Indian, Pacific oceans and Barents Sea. [1] As a Harvard physiologist, Redfield participated in several voyages on board the research vessel Atlantis, analyzing data for C, N, and P content in marine plankton, and referenced data collected by other researchers as early as 1898.
Typically, non-compressible fluids are used with no gas volume so that the expansion factor as a function of pressure is small. Mixing can be achieved within seconds at the smaller scales used in flow chemistry. Heat transfer is intensified. Mostly, because the area to volume ratio is large.
Most work in ecological stoichiometry focuses on the interface between an organism and its resources. This interface, whether it is between plants and their nutrient resources or large herbivores and grasses, is often characterized by dramatic differences in the elemental composition of each part. The difference, or mismatch, between the ...
The Kissing Number Problem. A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to ...
The law of conservation of mass can only be formulated in classical mechanics, in which the energy scales associated with an isolated system are much smaller than , where is the mass of a typical object in the system, measured in the frame of reference where the object is at rest, and is the speed of light.
Air–fuel equivalence ratio, λ (lambda), is the ratio of actual AFR to stoichiometry for a given mixture. λ = 1.0 is at stoichiometry, rich mixtures λ < 1.0, and lean mixtures λ > 1.0. There is a direct relationship between λ and AFR. To calculate AFR from a given λ, multiply the measured λ by the stoichiometric AFR for that fuel.