Search results
Results from the WOW.Com Content Network
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
The formal definition of the assignment problem (or linear assignment problem) is . Given two sets, A and T, together with a weight function C : A × T → R.Find a bijection f : A → T such that the cost function:
Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar, the problem becomes a multi-objective optimization one.
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [ 1 ] [ 2 ] It is generally divided into two subfields: discrete optimization and continuous optimization .
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
The engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative – parts of the process often need to be repeated many times before another can be entered – though the part(s) that get iterated and the number of such cycles in any given project may vary.
The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters of the model curve (,) so that the sum of the squares of the deviations () is minimized:
A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. [1] It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision ...