Search results
Results from the WOW.Com Content Network
In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is
Hexagonal close packed (hcp) unit cell. Hexagonal close packed (hcp) is one of the two simple types of atomic packing with the highest density, the other being the face-centered cubic (fcc). However, unlike the fcc, it is not a Bravais lattice, as there are two nonequivalent sets of lattice points.
Bravais lattices, also referred to as space lattices, ... This arrangement of atoms in a crystal structure is known as hexagonal close packing (hcp).
A network model of a primitive cubic system The primitive and cubic close-packed (also known as face-centered cubic) unit cells. In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.
In closest packing, every atom has 12 equidistant nearest neighbours, and therefore a coordination number of 12. If the close packed structures are considered as being built of layers of spheres, then the difference between hexagonal close packing and face-centred cubic is how each layer is positioned relative to others.
Honeycomb point set as a hexagonal lattice with a two-atom basis. The gray rhombus is a primitive cell. Vectors and are primitive translation vectors.. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1]
Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution ) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...
Slip in hexagonal close packed (hcp) metals is much more limited than in bcc and fcc crystal structures. Usually, hcp crystal structures allow slip on the densely packed basal {0001} planes along the <11 2 0> directions. The activation of other slip planes depends on various parameters, e.g. the c/a ratio.