enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...

  4. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  5. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates.

  6. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The black dot shows the point with coordinates x = 2, y = 3, and z = 4, or (2, 3, 4). A Cartesian coordinate system for a three-dimensional space consists of an ordered triplet of lines (the axes) that go through a common point (the origin), and are pair-wise perpendicular; an orientation for each axis; and a single unit of length for all three ...

  7. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it (a plane-plane intersection). Consider the first case, with points x = ( x 1 , x 2 , x 3 ) {\displaystyle x=(x_{1},x_{2},x_{3})} and y = ( y 1 , y 2 , y 3 ) . {\displaystyle y=(y_{1},y_{2},y_{3}).}

  8. Octant (solid geometry) - Wikipedia

    en.wikipedia.org/wiki/Octant_(solid_geometry)

    The horizontal plane shows the four quadrants between x- and y-axis. (Vertex numbers are little-endian balanced ternary.) An octant in solid geometry is one of the eight divisions of a Euclidean three-dimensional coordinate system defined by the signs of the coordinates. It is analogous to the two-dimensional quadrant and the one-dimensional ...

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...