enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    In molecular biology, two nucleotides on opposite complementary DNA or RNA strands that are connected via hydrogen bonds are called a base pair (often abbreviated bp). In the canonical Watson-Crick base pairing, adenine (A) forms a base pair with thymine (T) and guanine (G) forms one with cytosine (C) in DNA.

  3. Base pair - Wikipedia

    en.wikipedia.org/wiki/Base_pair

    The chemical structure of DNA base-pairs . A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA.

  4. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Chemical structure of DNA. Primary structure consists of a linear sequence of nucleotides that are linked together by phosphodiester bonds. It is this linear sequence of nucleotides that make up the primary structure of DNA or RNA. Nucleotides consist of 3 components: Nitrogenous base. Adenine; Guanine; Cytosine; Thymine (present in DNA only)

  5. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  6. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    Most DNA molecules are actually two polymer strands, bound together in a helical fashion by noncovalent bonds; this double-stranded (dsDNA) structure is maintained largely by the intrastrand base stacking interactions, which are strongest for G,C stacks. The two strands can come apart—a process known as melting—to form two single-stranded ...

  7. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    All living cells contain both DNA and RNA (except some cells such as mature red blood cells), while viruses contain either DNA or RNA, but usually not both. [15] The basic component of biological nucleic acids is the nucleotide , each of which contains a pentose sugar ( ribose or deoxyribose ), a phosphate group, and a nucleobase . [ 16 ]

  8. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    The chemical structure of RNA is very similar to that of DNA, but differs in three primary ways: Unlike double-stranded DNA, RNA is usually a single-stranded molecule (ssRNA) [4] in many of its biological roles and consists of much shorter chains of nucleotides. [5]

  9. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    The cis and trans structures depend on the orientation of the ribose sugar as opposed to the hydrogen bond interaction. These various orientations are shown in Figure 3. Therefore, with the cis/trans forms and the 3 hydrogen bond edges, there are 12 basic types of base pairing geometries which can be found in RNA structures.