Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
PCC is used as an oxidant.In particular, it has proven to be highly effective in oxidizing primary and secondary alcohols to aldehydes and ketones, respectively.The reagent is more selective than the related Jones' Reagent, so there is little chance of over-oxidation to form carboxylic acids if acidified potassium permanganate is used as long as water is not present in the reaction mixture.
The oxidation of secondary alcohols (R 1 R 2 CH−OH) normally terminates at the ketone (R 1 R 2 C=O) stage. Tertiary alcohols (R 1 R 2 R 3 C−OH) are resistant to oxidation. The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2 ...
For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol: 2 HCrO 4 − + 3 RR'C(OH)H + 8 H + + 4 H 2 O → 2 [Cr(H 2 O) 6] 3+ + 3 RR'CO. For oxidation of primary alcohols to carboxylic acids, 4 equivalents of chromic acid oxidize 3 equivalents of the alcohol. The aldehyde is an ...
The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine.Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. [1]
The oxidation is highly selective for secondary alcohols and does not oxidize other sensitive functional groups such as amines and sulfides. [3] Though primary alcohols can be oxidized under Oppenauer conditions, primary alcohols are seldom oxidized by this method due to the competing aldol condensation of aldehyde products. The Oppenauer ...
The inability of Fétizon's reagent to oxidize tertiary alcohols makes it extremely useful in the monooxidation of a [1,2] diol in which one of the alcohols is tertiary while avoiding cleavage of the carbon-carbon bond. [7] Fetizon's reagent oxidizes secondary alcohols selectively in the presence of tertiary alcohols
The reaction of tertiary alcohols containing an α-acetylenic group does not produce the expected aldehydes, but rather α,β-unsaturated methyl ketones via an enyne intermediate. [9] [10] This alternate reaction is called the Rupe reaction, and competes with the Meyer–Schuster rearrangement in the case of tertiary alcohols.