Search results
Results from the WOW.Com Content Network
The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 2 ] [ 3 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:
The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts for the same or similar conversions.
Fertilizer production is now the largest source of human-produced fixed nitrogen in the terrestrial ecosystem. Ammonia is a required precursor to fertilizers , explosives , and other products. The Haber process requires high pressures (around 200 atm) and high temperatures (at least 400 °C), which are routine conditions for industrial catalysis.
The history of the Haber process begins with the invention of the Haber process at the dawn of the twentieth century. The process allows the economical fixation of atmospheric dinitrogen in the form of ammonia, which in turn allows for the industrial synthesis of various explosives and nitrogen fertilizers, and is probably the most important industrial process developed during the twentieth ...
Fertilizer has a reputation for being a dirty business, but behind the soiled façade is a high-tech industry with a history of scientific advances and innovation that spreads beyond the farm.
The 1910s and 1920s witnessed the rise of the Haber process and the Ostwald process. The Haber process produces ammonia (NH 3) from methane (CH 4) (natural gas) gas and molecular nitrogen (N 2) from the air. The ammonia from the Haber process is then partially converted into nitric acid (HNO 3) in the Ostwald process. [14]
The Haber process, [5] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 6 ] [ 7 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:
Haber process – Atmospheric nitrogen (N 2) is separated, yielding ammonia (NH 3), which is used to make all synthetic fertilizer. The Haber process uses a fossil carbon source, generally natural gas , to provide the CO for the water–gas shift reaction , yielding hydrogen (H 2 ) and releasing CO 2 .