Search results
Results from the WOW.Com Content Network
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C 6 H 5 CH=CHC 6 H 5.Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond.
Absolute configuration showing the determination of the R and S descriptors. In chemistry, absolute configuration refers to the spatial arrangement of atoms within a molecular entity (or group) that is chiral, and its resultant stereochemical description. [1]
In organic chemistry, the Le Bel–Van 't Hoff rule states that the number of stereoisomers of an organic compound containing no internal planes of symmetry is 2 n, where n represents the number of asymmetric carbon atoms.
In stereochemistry, an epimer is one of a pair of diastereomers. [1] The two epimers have opposite configuration at only one stereogenic center out of at least two. [2] All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.
The quality of stereospecificity is focused on the reactants and their stereochemistry; it is concerned with the products too, but only as they provide evidence of a difference in behavior between reactants. Of stereoisomeric reactants, each behaves in its own specific way. Stereospecificity towards enantiomers is called enantiospecificity.
Determining stereochemistry in atropisomers using the helicity rule follows the priority: front substituent A > backward substituent A > front substituent B > backward substituent B Determining the axial stereochemistry of biaryl atropisomers can be accomplished through the use of a Newman projection along the axis of hindered rotation.
C. Cahn–Ingold–Prelog priority rules; Capped octahedral molecular geometry; Capped square antiprismatic molecular geometry; Capped trigonal prismatic molecular geometry