enow.com Web Search

  1. Ads

    related to: how enzymes reduce activation energy in photosynthesis worksheet questions
  2. generationgenius.com has been visited by 10K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    It is necessary either to supply an activation energy or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful rate. Living systems use complex macromolecular structures to lower the activation energies of biochemical reactions.

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  4. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    Under kinetic conditions, such as an enzymatic reaction with RuBisCO, the lighter isotope is favored because of a lower activation energy. Oxygenic photosynthesis is a metabolic pathway facilitated by autotrophs, including plants, algae, and cyanobacteria. This pathway converts inorganic carbon dioxide from the atmosphere or aquatic environment ...

  5. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The electron in the higher energy level is unstable and will quickly return to its normal lower energy level. To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence).

  6. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    The enzymes in the Calvin cycle are functionally equivalent to most enzymes used in other metabolic pathways such as gluconeogenesis and the pentose phosphate pathway, but the enzymes in the Calvin cycle are found in the chloroplast stroma instead of the cell cytosol, separating the reactions. They are activated in the light (which is why the ...

  7. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    The energized electrons transferred to plastoquinone are ultimately used to reduce NADP + to NADPH or are used in non-cyclic electron flow. [1] DCMU is a chemical often used in laboratory settings to inhibit photosynthesis. When present, DCMU inhibits electron flow from photosystem II to plastoquinone.

  8. Ferredoxin—NADP(+) reductase - Wikipedia

    en.wikipedia.org/wiki/Ferredoxin—NADP(+)_reductase

    The 3 substrates of this enzyme are reduced ferredoxin, NADP +, and H +, whereas its two products are oxidized ferredoxin and NADPH. It has a flavin cofactor, FAD. This enzyme belongs to the family of oxidoreductases, that use iron-sulfur proteins as electron donors and NAD + or NADP + as electron acceptors. This enzyme participates in ...

  9. Dephosphorylation - Wikipedia

    en.wikipedia.org/wiki/Dephosphorylation

    Dephosphorylation and its counterpart, phosphorylation, activate and deactivate enzymes by detaching or attaching phosphoric esters and anhydrides. A notable occurrence of dephosphorylation is the conversion of ATP to ADP and inorganic phosphate. Dephosphorylation employs a type of hydrolytic enzyme, or hydrolase, which cleaves

  1. Ads

    related to: how enzymes reduce activation energy in photosynthesis worksheet questions