enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.

  3. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite . [ 1 ] [ 2 ] The impolite numbers are exactly the powers of two , and the polite numbers are the natural numbers that are not powers of two.

  4. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [21] the largest number now known not to be a sum of ...

  5. Sum of four cubes problem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_four_cubes_problem

    The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.

  6. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number ⁠ π 2 / 6 ⁠, or ζ(2) where ζ is the Riemann zeta ...

  7. Ulam number - Wikipedia

    en.wikipedia.org/wiki/Ulam_number

    Apart from 1 + 2 = 3 any subsequent Ulam number cannot be the sum of its two prior consecutive Ulam numbers. Proof: Assume that for n > 2, U n−1 + U n = U n+1 is the required sum in only one way; then so does U n−2 + U n produce a sum in only one way, and it falls between U n and U n+1.

  8. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    Lemma: The sum of any non-empty set of distinct, non-consecutive Fibonacci numbers whose largest member is F j is strictly less than the next larger Fibonacci number F j + 1 . The lemma can be proven by induction on j. Now take two non-empty sets and of distinct non-consecutive Fibonacci numbers which have the same sum, =.

  9. Harshad number - Wikipedia

    en.wikipedia.org/wiki/Harshad_number

    The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10, and 19 is not divisible by 10. In base 10, every natural number expressible in the form 9R n a n , where the number R n consists of n copies of the single digit 1, n > 0, and a n is a positive integer less than 10 n and multiple of n , is a harshad ...