Search results
Results from the WOW.Com Content Network
A centrifuge is a device that uses centrifugal force to subject a specimen to a specified constant force - for example, to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities (e.g. cream from milk) or liquids from solids. It works by ...
The conversion factor between RPM and g depends on the radius of the centrifuge rotor. The particles' settling velocity in centrifugation is a function of their size and shape, centrifugal acceleration, the volume fraction of solids present, the density difference between the particle and the liquid, and the viscosity. The most common ...
In centrifugation the clearing factor or k factor represents the relative pelleting efficiency of a given centrifuge rotor at maximum rotation speed. It can be used to estimate the time t {\displaystyle t} (in hours) required for sedimentation of a fraction with a known sedimentation coefficient s {\displaystyle s} (in svedbergs ):
[[Category:Formula E formatting and function templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Formula E formatting and function templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
This template is used on approximately 7,500 pages and changes may be widely noticed. Test changes in the template's /sandbox or /testcases subpages, or in your own user subpage . Consider discussing changes on the talk page before implementing them.
Diagram of a gas centrifuge with countercurrent flow, used for separating isotopes of uranium. A gas centrifuge is a device that performs isotope separation of gases. A centrifuge relies on the principles of centrifugal force accelerating molecules so that particles of different masses are physically separated in a gradient along the radius of a rotating container.
With a 3 phase decanter centrifuge, it is possible to separate 3 phases from each other in one process step only. For example, two liquids which cannot be mixed because of different densities (e.g. oil and water) are separated from a solids phase. The heavy liquid (water) collects in the middle between the oil and the solids layer.
The sedimentation coefficient is typically dependent on the concentration of the solute (i.e. a macromolecular solute such as a protein). Despite 80+ years of study, there is not yet a consensus on the way to perfectly model this relationship while also taking into account all possible non-ideal terms to account for the diverse possible sizes, shapes, and densities of molecular solutes. [2]