Search results
Results from the WOW.Com Content Network
In an asymmetric key encryption scheme, anyone can encrypt messages using a public key, but only the holder of the paired private key can decrypt such a message. The security of the system depends on the secrecy of the private key, which must not become known to any other.
In a symmetric-key system, Bob knows Alice's encryption key. Once the message is encrypted, Alice can safely transmit it to Bob (assuming no one else knows the key). In order to read Alice's message, Bob must decrypt the ciphertext using which is known as the decryption cipher, :
The ciphertext message contains all the information of the plaintext message, but is not in a format readable by a human or computer without the proper mechanism to decrypt it. The operation of a cipher usually depends on a piece of auxiliary information, called a key (or, in traditional NSA parlance, a cryptovariable). The encrypting procedure ...
Before the modern era, cryptography focused on message confidentiality (i.e., encryption)—conversion of messages from a comprehensible form into an incomprehensible one and back again at the other end, rendering it unreadable by interceptors or eavesdroppers without secret knowledge (namely the key needed for decryption of that message).
A book cipher is a cipher in which each word or letter in the plaintext of a message is replaced by some code that locates it in another text, the key. A simple version of such a cipher would use a specific book as the key, and would replace each word of the plaintext by a number that gives the position where that word occurs in that book.
The key to decrypt a message requires no more knowledge than the fact that ROT13 is in use. Even if secrecy does not fail, any alien party or individual, capable of intercepting the message, could break the code by spending enough time on decoding the text through frequency analysis [2] or finding other patterns.
Six months later, in response to RSA Security's DES Challenge III, and in collaboration with distributed.net, the EFF used Deep Crack to decrypt another DES-encrypted message, winning another $10,000. This time, the operation took less than a day – 22 hours and 15 minutes. The decryption was completed on January 19, 1999.
We reassemble E n−1 (which is the same E n−1 seen in the encryption process) for processing in step 6. X n−1 = Decrypt (K, E n−1). Decrypt E n−1 to create X n−1. This reverses encryption step 2. X n−1 is the same as in the encryption process. P n−1 = X n−1 XOR C n−2. Exclusive-OR X n−1 with the previous ciphertext block, C ...