Search results
Results from the WOW.Com Content Network
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]
It has been used in Crayon Physics Deluxe, Limbo, Rolando, Incredibots, Angry Birds, Tiny Wings, Shovel Knight, Transformice, Happy Wheels, [3] and many online Flash games, [4] as well as iPhone, iPad and Android games using the Cocos2d or Moscrif game engine and Corona framework. It has also been used in the Unity game engine.
Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...
The core package of Torch is torch.It provides a flexible N-dimensional array or Tensor, which supports basic routines for indexing, slicing, transposing, type-casting, resizing, sharing storage and cloning.
Observing field model. Not drawn to scale. In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 (Color Appearance Modelling for Color Management Systems) and the successor of CIECAM97s.
Download QR code; In other projects Appearance. move to sidebar hide File; File history ... TensorFlow; Metadata. This file contains additional information, probably ...
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.