Search results
Results from the WOW.Com Content Network
The Hough transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [1] [2] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction.
The Prewitt operator is used in image processing, particularly within edge detection algorithms. Technically, it is a discrete differentiation operator, computing an approximation of the gradient of the image intensity function.
Sobel and Feldman presented the idea of an "Isotropic 3 × 3 Image Gradient Operator" at a talk at SAIL in 1968. [1] Technically, it is a discrete differentiation operator , computing an approximation of the gradient of the image intensity function.
Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]
Intuitively, the eigenvalues of the structure tensor matrix associated with a given pixel describe the gradient strength in a neighborhood of that pixel. As such, a structure tensor matrix with large eigenvalues corresponds to an image neighborhood with large gradients in orthogonal directions - i.e., a corner.