Search results
Results from the WOW.Com Content Network
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.
In language, the status of an item (usually through what is known as "downranking" or "rank-shifting") in relation to the uppermost rank in a clause; for example, in the sentence "I want to eat the cake you made today", "eat" is on the uppermost rank, but "made" is downranked as part of the nominal group "the cake you made today"; this nominal ...
A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly one solution for each b in K n. (Here, "bijective" can equivalently be replaced with "injective" or "surjective") The columns of A form a basis of K n. (In this statement, "basis ...
A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...
For example, when corporations are ranked by decreasing size, their sizes are found to be inversely proportional to the rank. [13] The same relation is found for personal incomes (where it is called Pareto principle [ 14 ] ), number of people watching the same TV channel, [ 15 ] notes in music, [ 16 ] cells transcriptomes , [ 17 ] [ 18 ] and more.
Constant rank maps have a number of nice properties and are an important concept in differential topology. Three special cases of constant rank maps occur. A constant rank map f : M → N is an immersion if rank f = dim M (i.e. the derivative is everywhere injective), a submersion if rank f = dim N (i.e. the derivative is everywhere surjective),
A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test.
An alternative name for the Spearman rank correlation is the “grade correlation”; [9] in this, the “rank” of an observation is replaced by the “grade”. In continuous distributions, the grade of an observation is, by convention, always one half less than the rank, and hence the grade and rank correlations are the same in this case.