Search results
Results from the WOW.Com Content Network
By the 2015 definition, 1 au of arc length subtends an angle of 1″ at the center of the circle of radius 1 pc. That is, 1 pc = 1 au/tan( 1″ ) ≈ 206,264.8 au by definition. [ 9 ] Converting from degree/minute/second units to radians ,
A truly dark sky has a surface brightness of 2 × 10 −4 cd m −2 or 21.8 mag arcsec −2. [9] [clarification needed] The peak surface brightness of the central region of the Orion Nebula is about 17 Mag/arcsec 2 (about 14 milli nits) and the outer bluish glow has a peak surface brightness of 21.3 Mag/arcsec 2 (about 0.27 millinits). [10]
The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.
The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299 792 458 when expressed in the unit m⋅s −1, where the second is defined in terms of the caesium frequency Δν Cs. The concept of defining a unit of length in terms of a time received some comment. [185]
Although not defined by the pendulum, the final length chosen for the metre, 10 −7 of the pole-to-equator meridian arc, was very close to the length of the seconds pendulum (0.9937 m), within 0.63%. Although no reason for this particular choice was given at the time, it was probably to facilitate the use of the seconds pendulum as a secondary ...
The lux is one lumen per square metre (lm/m 2), and the corresponding radiometric unit, which measures irradiance, is the watt per square metre (W/m 2). There is no single conversion factor between lux and W/m 2 ; there is a different conversion factor for every wavelength, and it is not possible to make a conversion unless one knows the ...
Some common events in seconds are: a stone falls about 4.9 meters from rest in one second; a pendulum of length about one meter has a swing of one second, so pendulum clocks have pendulums about a meter long; the fastest human sprinters run 10 meters in a second; an ocean wave in deep water travels about 23 meters in one second; sound travels ...
where g is the acceleration due to gravity, 9.8 meters (32 feet) per second squared. Because g and π (3.14) are constants, the equation can be reduced to: = when C is measured in meters per second and L in meters. In both formulas the wave speed is proportional to the square root of the wavelength.