Search results
Results from the WOW.Com Content Network
The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.
The lanthanide contraction only partially accounts for this anomaly. [11] Because the 6s 2 orbital is contracted by relativistic effects and may therefore only weakly contribute to any chemical bonding, Hg–Hg bonding must be mostly the result of van der Waals forces. [11] [13] [14] Mercury gas is mostly monatomic, Hg(g).
Other effects of the d-block contraction are that the Ga 3+ ion is smaller than expected, being closer in size to Al 3+.Care must be taken in interpreting the ionization potentials for indium and thallium, since other effects, e.g. the inert-pair effect, become increasingly important for the heavier members of the group.
The d-block contraction is less pronounced than the lanthanide contraction but arises from a similar cause. In this case, it is the poor shielding capacity of the 3d-electrons which affects the atomic radii and chemistries of the elements immediately following the first row of the transition metals, from gallium (Z = 31) to bromine (Z = 35). [19]
A direct consequence is that, during the formation of coordination bonds, the REE behaviour gradually changes along the series. Furthermore, the lanthanide contraction causes the ionic radius of Ho 3+ (0.901 Å) to be almost identical to that of Y 3+ (0.9 Å), justifying the inclusion of the latter among the REE.
The lanthanide (/ ˈ l æ n θ ə n aɪ d /) or lanthanoid (/ ˈ l æ n θ ə n ɔɪ d /) series of chemical elements [a] comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium.
Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of the heavy lanthanides, but scandium shows several differences due to its small size. This is a similar pattern to those of the early transition metal groups, where the lightest element is ...
The wider the electron shells are in space, the weaker is the electric interaction between the electrons and the nucleus due to screening. Further, because of differences in orbital penetration, we can order the screening strength, S, that electrons in a given orbital (s, p, d, or f) provide to the rest of the electrons thusly: > > > ().