Search results
Results from the WOW.Com Content Network
This process is then repeated to generate more numbers. The value of n must be even in order for the method to work – if the value of n is odd, then there will not necessarily be a uniquely defined "middle n-digits" to select from. Consider the following: If a 3-digit number is squared, it can yield a 6-digit number (e.g. 540 2 = 291600). If ...
Middle-Square Weyl Sequence RNG (see also middle-square method) 2017 B. Widynski [34] [35] A variation on John von Neumann's original middle-square method, this generator may be the fastest RNG that passes all the statistical tests. xorshiftr+: 2018 U. C. Çabuk, Ö. Aydın, and G. Dalkılıç [36] A modification of xorshift+.
The square-free part is 7, the square-free factor such that the quotient is a square is 3 ⋅ 7 = 21, and the largest square-free factor is 2 ⋅ 3 ⋅ 5 ⋅ 7 = 210. No algorithm is known for computing any of these square-free factors which is faster than computing the complete prime factorization.
For example, squaring the number "1111" yields "1234321", which can be written as "01234321", an 8-digit number being the square of a 4-digit number. This gives "2343" as the "random" number. Repeating this procedure gives "4896" as the next result, and so on. Von Neumann used 10 digit numbers, but the process was the same.
All other four-digit numbers eventually reach 6174 if leading zeros are used to keep the number of digits at 4. For numbers with three identical digits and a fourth digit that is one higher or lower (such as 2111), it is essential to treat 3-digit numbers with a leading zero; for example: 2111 – 1112 = 0999; 9990 – 999 = 8991; 9981 – 1899 ...
if the last digit of a number is 4 or 6, its square ends in an odd digit followed by a 6; and; if the last digit of a number is 5, its square ends in 25. In base 12, a square number can end only with square digits (like in base 12, a prime number can end only with prime digits or 1), that is, 0, 1, 4 or 9, as follows:
The product of two variables ranging from 90-99 will result in a 4-digit number. The first step is to find the ones-digit and the tens digit. Subtract both variables from 100 which will result in 2 one-digit number. The product of the 2 one-digit numbers will be the last two digits of one's final product.
All square triangular numbers have the form , where is a convergent to the continued fraction expansion of , the square root of 2. [ 4 ] A. V. Sylwester gave a short proof that there are infinitely many square triangular numbers: If the n {\displaystyle n} th triangular number n ( n + 1 ) 2 {\displaystyle {\tfrac {n(n+1)}{2}}} is square, then ...