enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    A ray through the unit hyperbola = at the point (,), where is twice the area between the ray, the hyperbola, and the -axis. For points on the hyperbola below the -axis, the area is considered negative.

  3. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    In this context the unit hyperbola is a calibration hyperbola [3] [4] Commonly in relativity study the hyperbola with vertical axis is taken as primary: The arrow of time goes from the bottom to top of the figure — a convention adopted by Richard Feynman in his famous diagrams. Space is represented by planes perpendicular to the time axis.

  4. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  5. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    If P 0 is taken to be the point (1, 1), P 1 the point (x 1, 1/x 1), and P 2 the point (x 2, 1/x 2), then the parallel condition requires that Q be the point (x 1 x 2, 1/x 1 1/x 2). It thus makes sense to define the hyperbolic angle from P 0 to an arbitrary point on the curve as a logarithmic function of the point's value of x .

  6. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Any point in HP is an infinite distance from the point p at the foot of the perpendicular to R, but a sequence of points on this perpendicular may tend in the direction of p. The corresponding sequence in Q tends along a ray toward the origin. The old Euclidean boundary of Q is no longer relevant.

  7. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    Choose a line (the x-axis) in the hyperbolic plane (with a standardized curvature of -1) and label the points on it by their distance from an origin (x=0) point on the x-axis (positive on one side and negative on the other). For any point in the plane, one can define coordinates x and y by dropping a perpendicular onto the x-axis.

  8. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center.

  9. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The minor axis is the shortest diameter of an ellipse, and its half-length is the semi-minor axis (b), the same value b as in the standard equation below. By analogy, for a hyperbola the parameter b in the standard equation is also called the semi-minor axis. The following relations hold: [6]