enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaia hypothesis - Wikipedia

    en.wikipedia.org/wiki/Gaia_hypothesis

    The Gaia hypothesis (/ ˈ ɡ aɪ. ə /), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating complex system that helps to maintain and perpetuate the conditions for life on the planet.

  3. Thermostability - Wikipedia

    en.wikipedia.org/wiki/Thermostability

    Crystal structure of β-glucosidase from Thermotoga neapolitana (PDB: 5IDI).Thermostable protein, active at 80°C and with unfolding temperature of 101°C. [1]In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative ...

  4. Energy flow (ecology) - Wikipedia

    en.wikipedia.org/wiki/Energy_flow_(ecology)

    There are two major food chains: The primary food chain is the energy coming from autotrophs and passed on to the consumers; and the second major food chain is when carnivores eat the herbivores or decomposers that consume the autotrophic energy. [16] Consumers are broken down into primary consumers, secondary consumers and tertiary consumers.

  5. There Are 4 Pillars of Stability for Life on Earth ... - AOL

    www.aol.com/4-pillars-stability-life-earth...

    The study creates a new set of models that treats each of these systems like the pillars they are—that is, if one falls, the rest soon follow suit due to the interconnected nature of each system.

  6. Thermoregulation - Wikipedia

    en.wikipedia.org/wiki/Thermoregulation

    Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.

  7. Thermal stability - Wikipedia

    en.wikipedia.org/wiki/Thermal_stability

    In thermodynamics, thermal stability describes the stability of a water body and its resistance to mixing. [1] It is the amount of work needed to transform the water to a uniform water density . The Schmidt stability "S" is commonly measured in joules per square meter (J/m 2 ).

  8. Thermal neutral zone - Wikipedia

    en.wikipedia.org/wiki/Thermal_neutral_zone

    The human outer or peripheral shell (skin, subcutaneous fat etc.) acts as an adjustable insulator/radiator with the main mechanism of adjustment being blood flow to this compartment. If the surroundings are warm then heat loss is less, so the body directs more blood to the periphery to maintain the gradient for energy flow.

  9. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    An explicit distinction between 'thermal equilibrium' and 'thermodynamic equilibrium' is made by B. C. Eu. He considers two systems in thermal contact, one a thermometer, the other a system in which there are several occurring irreversible processes, entailing non-zero fluxes; the two systems are separated by a wall permeable only to heat.