Search results
Results from the WOW.Com Content Network
The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted. Emission spectrum of hydrogen. The above picture shows the visible light emission spectrum for hydrogen. If ...
The wavelength of the light produced depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, [note 1] design features of the devices such as special optical coatings and die shape are required to efficiently emit light. A LED is a long-lived light source, but certain mechanisms can cause ...
The blue light from the jet emerging from the bright AGN core, towards the lower right, is due to synchrotron radiation. Synchrotron radiation is also generated by astronomical objects, typically where relativistic electrons spiral (and hence change velocity) through magnetic fields.
The secondary electrons induced by these high energy x-rays result in the Cherenkov light emission, where the detected signal can be imaged at the entry and exit surfaces of the tissue. [30] The Cherenkov light emitted from patient's tissue during radiation therapy is a very low light level signal but can be detected by specially designed ...
Photoemission of electrons from a metal plate accompanied by the absorption of light quanta – photons. The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons.
Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).
Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).
The two free electrons then travel towards the anode and gain sufficient energy from the electric field to cause impact ionization when the next collisions occur; and so on. This is effectively a chain reaction of electron generation, and is dependent on the free electrons gaining sufficient energy between collisions to sustain the avalanche. [17]