Search results
Results from the WOW.Com Content Network
When p = ±3, the above values of t 0 are sometimes called the Chebyshev cube root. [29] More precisely, the values involving cosines and hyperbolic cosines define, when p = −3, the same analytic function denoted C 1/3 (q), which is the proper Chebyshev cube root. The value involving hyperbolic sines is similarly denoted S 1/3 (q), when p = 3.
Instantiating a symbolic solution with specific numbers gives a numerical solution; for example, a = 0 gives (x, y) = (1, 0) (that is, x = 1, y = 0), and a = 1 gives (x, y) = (2, 1). The distinction between known variables and unknown variables is generally made in the statement of the problem, by phrases such as "an equation in x and y ", or ...
But if one requires an exact solution or a solution describing strong fields, the evolution of both the metric and the stress–energy tensor must be solved for at once. To obtain solutions, the relevant equations are the above quoted EFE (in either form) plus the continuity equation (to determine the evolution of the stress–energy tensor):
A solution is optimal if the sequence of moves is as short as possible. The highest value of this, among all initial configurations, is known as God's number, [3] or, more formally, the minimax value. [4] God's algorithm, then, for a given puzzle, is an algorithm that solves the puzzle and produces only optimal solutions.
One possibility is to use not only the previously computed value y n to determine y n+1, but to make the solution depend on more past values. This yields a so-called multistep method . Perhaps the simplest is the leapfrog method which is second order and (roughly speaking) relies on two time values.
The equals sign, used to represent equality symbolically in an equation. In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] [2] Equality between A and B is written A = B, and pronounced "A equals B".
A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.