Search results
Results from the WOW.Com Content Network
a.b matches any string that contains an "a", and then any character and then "b". a.*b matches any string that contains an "a", and then the character "b" at some later point. These constructions can be combined to form arbitrarily complex expressions, much like one can construct arithmetical expressions from numbers and the operations +, − ...
In object-oriented languages, string functions are often implemented as properties and methods of string objects. In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions.
The matching algorithms of the library are based on the PCRE library, but not all of the PCRE library is interfaced and some parts of the library go beyond what PCRE offers. Currently PCRE version 8.40 (release date 2017-01-11) is used.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot; substitution: coat → cost
Grammars of this type can match anything that can be matched by a regular grammar, and furthermore, can handle the concept of recursive "nesting" ("every A is eventually followed by a matching B"), such as the question of whether a given string contains correctly nested parentheses. The rules of Context-free grammars are purely local, however ...
If the characters do not match, there is no need to continue searching backwards along the text. If the character in the text does not match any of the characters in the pattern, then the next character in the text to check is located m characters farther along the text, where m is the length of the pattern.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.