Search results
Results from the WOW.Com Content Network
Nocedal is well-known for his research in nonlinear optimization, particularly for his work on L-BFGS [4] [5] and his textbook Numerical Optimization. [6] In 2001, Nocedal co-founded Ziena Optimization Inc. and co-developed the KNITRO software package. [7] Nocedal was a chief scientist at Ziena Optimization Inc. from 2002 to 2012 before the ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Due to its resulting linear memory requirement, the L-BFGS method is particularly well suited for optimization problems with many variables. Instead of the inverse Hessian H k , L-BFGS maintains a history of the past m updates of the position x and gradient ∇ f ( x ), where generally the history size m can be small (often m < 10 ...
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization, also known as Lagrange-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.
Nocedal, Jorge and Wright, Stephen J. (1999). Numerical Optimization. Springer. ISBN 0-387-98793-2. Jan Brinkhuis and Vladimir Tikhomirov, Optimization: Insights and Applications, 2005, Princeton University Press
Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.
Sequential minimal optimization; Sequential quadratic programming; Simplex algorithm; Simulated annealing; Simultaneous perturbation stochastic approximation; Social cognitive optimization; Space allocation problem; Space mapping; Special ordered set; Spiral optimization algorithm; Stochastic dynamic programming; Stochastic gradient Langevin ...
In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.