Search results
Results from the WOW.Com Content Network
In physics, and especially scattering theory, the momentum-transfer cross section (sometimes known as the momentum-transport cross section [1]) is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a ...
In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in the early 20th century. [ 1 ]
The evolution of momentum on the grid under each scheme is identical. Despite the differences among these four-momentum mapping formats, their common points are still dominant. In the P2G process, the momentum mapping in PIC, FLIP, and hybrid schemes is the same. The material point positions are updated in the same manner across all four schemes.
The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...
Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an example of momentum diffusion (the rain drop loses momentum to the surrounding air through viscous stresses and decelerates). The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, and Fick's law for mass are
In addition of its initial intrinsic transverse momentum the struck quark also acquires a transverse momentum during the hadronization process. Consequently, the structure functions entering the SIDIS cross-section or asymmetries are convolutions of a k T {\displaystyle k_{T}} -dependent quark density, the TMD itself, and of a p T ...
In quantum physics, Regge theory (/ ˈ r ɛ dʒ eɪ / REJ-ay, Italian:) is the study of the analytic properties of scattering as a function of angular momentum, where the angular momentum is not restricted to be an integer multiple of ħ but is allowed to take any complex value. The nonrelativistic theory was developed by Tullio Regge in 1959. [1]
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus.