Search results
Results from the WOW.Com Content Network
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Indeed, for ideal-gas reactions K p is independent of pressure. [17] Pressure dependence of the water ionization constant at 25 °C. In general, ionization in aqueous solutions tends to increase with increasing pressure. In a condensed phase, the pressure dependence of the equilibrium constant is associated with the reaction volume. [18] For ...
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
When the difference between successive pK values is about four or more, as in this example, each species may be considered as an acid in its own right; [27] In fact salts of H 2 PO − 4 may be crystallised from solution by adjustment of pH to about 5.5 and salts of HPO 2− 4 may be crystallised from solution by adjustment of pH to about 10.
However, a common temperature and pressure in use by NIST for thermodynamic experiments is 298.15 K (25 °C, 77 °F) and 1 bar (14.5038 psi, 100 kPa). [ 4 ] [ 5 ] NIST also uses 15 °C (288.15 K, 59 °F) for the temperature compensation of refined petroleum products, despite noting that these two values are not exactly consistent with each other.
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
p is the gas pressure; R is the gas constant, T is temperature, V m is the molar volume (V/n), a is a constant that corrects for attractive potential of molecules, and; b is a constant that corrects for volume. The constants are different depending on which gas is being analyzed. The constants can be calculated from the critical point data of ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...