enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The absolute value of a number may be thought of as its distance from zero. In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative (in which case negating makes positive), and . For example, the absolute value of 3 is ...

  3. Ostrowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Ostrowski's_theorem

    Ostrowski's theorem. In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p -adic absolute value. [1]

  4. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of . The p -adic valuation is a valuation and gives rise to an analogue of the usual absolute value.

  5. Archimedean property - Wikipedia

    en.wikipedia.org/wiki/Archimedean_property

    Illustration of the Archimedean property. In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, as typically construed, states that given two positive numbers and ...

  6. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  7. Auxiliary function - Wikipedia

    en.wikipedia.org/wiki/Auxiliary_function

    Auxiliary function. In mathematics, auxiliary functions are an important construction in transcendental number theory. They are functions that appear in most proofs in this area of mathematics and that have specific, desirable properties, such as taking the value zero for many arguments, or having a zero of high order at some point. [1]

  8. Discrete valuation ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_valuation_ring

    Discrete valuation ring. In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R that satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field. R is a valuation ring with a value ...

  9. Valuation (algebra) - Wikipedia

    en.wikipedia.org/wiki/Valuation_(algebra)

    In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis ...