Search results
Results from the WOW.Com Content Network
In mathematics, and in particular linear algebra, the Moore–Penrose inverse + of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
In mathematics, a block matrix pseudoinverse is a formula for the pseudoinverse of a partitioned matrix. This is useful for decomposing or approximating many algorithms updating parameters in signal processing , which are based on the least squares method.
where U is m by m orthogonal matrix, V is n by n orthogonal matrix and is an m by n matrix with all its elements outside of the main diagonal equal to 0. The pseudoinverse of Σ {\displaystyle \Sigma } is easily obtained by inverting its non-zero diagonal elements and transposing.
Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b' , where b' is the projection of b onto the column space of A .
This is applied, e.g., in the Kalman filter and recursive least squares methods, to replace the parametric solution, requiring inversion of a state vector sized matrix, with a condition equations based solution. In case of the Kalman filter this matrix has the dimensions of the vector of observations, i.e., as small as 1 in case only one new ...
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
The Arnoldi process also constructs ~, an (+)-by-upper Hessenberg matrix which satisfies = + ~ an equality which is used to simplify the calculation of (see § Solving the least squares problem). Note that, for symmetric matrices, a symmetric tri-diagonal matrix is actually achieved, resulting in the MINRES method.
The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P. If A is a nilpotent matrix (for example a shift matrix), then = The hyper-power sequence is