Search results
Results from the WOW.Com Content Network
Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn ...
Rotation. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number ...
In mathematics, a rotation of axes in two dimensions is a mapping from an xy - Cartesian coordinate system to an x′y′ -Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle . A point P has coordinates (x, y) with respect to the ...
Rotation matrix. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.
Quaternions and spatial rotation. Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have ...
In mechanics and geometry, the 3D rotation group, often denoted SO (3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [1] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation ...
In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are ...
A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...